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Abstract

We introduce a highly efficient method for solving continuous
partially-observable Markov decision processes (POMDPs)
in which beliefs can be modeled using Gaussian distributions
over the state space. Our method enables fast solutions to
sequential decision making under uncertainty for a variety
of problems involving noisy or incomplete observations and
stochastic actions. We present an efficient approach to com-
pute locally-valid approximations to the value function over
continuous spaces in time polynomial (O[n"]) in the dimen-
sion n of the state space. To directly tackle the intractabil-
ity of solving general POMDPs, we leverage the assumption
that beliefs are Gaussian distributions over the state space, ap-
proximate the belief update using an extended Kalman filter
(EKF), and represent the value function by a function that is
quadratic in the mean and linear in the variance of the belief.
Our approach iterates towards a linear control policy over the
state space that is locally-optimal with respect to a user de-
fined cost function, and is approximately valid in the vicinity
of a nominal trajectory through belief space. We demonstrate
the scalability and potential of our approach on problems in-
spired by robot navigation under uncertainty for state spaces
of up to 128 dimensions.

1 Introduction

Partially-observable Markov decision processes (POMDPs)
(Kaelbling, Littman, and Cassandra 1998) provide a prin-
cipled framework for sequential decision making under un-
certainty for a variety of tasks involving noisy or incomplete
observations and stochastic actions. The objective is to com-
pute a policy defined as an optimal action for each possible
belief in the state space such that the expected cost for com-
pleting the task is minimized. In this paper, we introduce a
highly efficient method for solving continuous POMDPs in
which beliefs can be modeled using Gaussian distributions
over the state space. Problems that fall in this subclass of
POMDPs span a variety of real-world applications, includ-
ing modeling eye-hand coordination (Erez and Smart 2010)
and navigating a robot toward a goal in the presence of mo-
tion uncertainty and noisy, incomplete sensing.

Computing exact solutions to general POMDPs is hard
(C. Papadimitriou 1987), as it requires computing a pol-
icy over an infinite-dimensional belief space, the space of
probability distributions over the (finite-dimensional) state
space. For problems involving discrete state, action, and/or
observation spaces, algorithms have been developed that
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use approximate value iteration with point-based updates
(Pineau, Gordon, and Thrun 2003; Smith and Simmons
2004; Porta et al. 2006; Kurniawati, Hsu, and Lee 2008;
Silver and Veness 2010; Kurniawati et al. 2011; Bai et al.
2011). For problems more naturally defined over continu-
ous spaces (e.g. robot navigation), discretizing the problem
and using the aforementioned approaches leads to an expo-
nential growth in the number of states, inherently subjecting
these problems to the “curse of dimensionality”.

When considering continuous state and actions spaces, a
key challenge is creating an efficient representation of the
value function. The methods of (Thrun 2000; Brooks et
al. 2006; Hauser 2011) handle continuous state and action
spaces, but maintain a global (discrete) representation of the
value function over the belief space, which limits their ap-
plicability to small to medium sized domains. Another class
of methods avoids computation in the belief space by eval-
uating a large number of candidate trajectories in the state
space (Prentice and Roy 2009; van den Berg, Abbeel, and
Goldberg 2011; Bry and Roy 2011). These methods will not
yield optimal plans in the belief space.

For problems in which it is reasonable to model be-
liefs using Gaussian distributions, beliefs can be represented
in parameterized form (Miller, Harris, and Chong 2009;
Erez and Smart 2010; Platt et al. 2010; van den Berg,
Patil, and Alterovitz 2011). These methods handle continu-
ous state, action, and observation spaces and approximately
compute the value function in parametric form only in lo-
cal regions of the belief space, allowing for a running time
polynomial in the dimension n of the state space. These
methods consider a value function quadratic in the belief,
leading to an O[n”] running time when a local optimization
method such as differential dynamic programming (DDP)
is used in belief space (van den Berg, Patil, and Alterovitz
2011). Local approaches can be extended to non-Gaussian
beliefs (Platt et al. 2011) by using particle filters.

In this paper, we present a new method for computing
locally optimal solutions to continuous POMDPs in which
belief is modeled using Gaussian distributions. Our ap-
proach performs approximate value iteration over the be-
lief space with a running time that is only O[n?] in the di-
mension n of the state space, which considerably improves
upon prior work mentioned above and enables solving prob-
lems of higher dimensionality. The key insight that en-
ables this is the representation of the value function by a
function that is quadratic in the mean and linear in the
variance of the belief. This representation naturally aligns
with cost functions that are quadratic in the state since the



expected cost is then quadratic in the mean and linear in
the variance of the state (which follows from the identity
E[xTQx] = E[x]TQ E[x] + tr[Q Var[x]] for any stochastic
variable x). In addition, our approach does not make the (er-
roneous) assumption that maximum-likelihood observations
are received (which previous approaches do to obtain deter-
ministic belief dynamics) and accounts for stochastic belief
dynamics in the value iteration, resulting in more accurate
solutions to continuous POMDPs. In addition, our approach
handles hard constraints, e.g. obstacles in the environment.
We demonstrate the scalability and potential of our ap-
proach on problems with state spaces of up to 128 dimen-
sions, and on a problem inspired by robotics involving a
non-holonomic car-like robot navigating among obstacles.

2 Preliminaries and Definitions

We begin by defining POMDPs in their most general formu-
lation. Then, we specifically state the instance of the prob-
lem we discuss in this paper.

General POMDPs

Let X be the space of all possible states x, U be the space
of all possible control inputs u, and Z be the space of all
possible sensor measurements z that may be received. The
belief X is defined as the distribution of the state x; at stage
t given all past control inputs and sensor measurements. Let
B denote the space of all possible beliefs. Given a control
input uy and a measurement z;, 1, the belief is propagated
using a Bayesian filter, which defines the belief dynamics
written as a function 8 : B x U x Z — B:

Xy = ﬁ[xtauuzt-s-l]- (1

Now, the challenge of the POMDP problem is to find a
control policy m; : B — U for all 0 < ¢ < ¢, where ¢ is the
time horizon, such that selecting the controls u; = m:[Ay]
minimizes the objective function:

By s celX]) + X020 e, wil), )

for given immediate cost functions ¢, : B — R and ¢; :
B x U — R. The expectation is taken given the stochastic
nature of the measurements that may be received.

A general solution approach uses value iteration (Thrun,
Burgard, and Fox 2005), a backward recursion procedure, to
find the control policy ; for each stage ¢:

ve[X] = o[ X], 3)
v X] = muin(ct[X, u] + ]E)[vtﬂ[ﬁ[X,u,z]]]L 4)
m[X] =

arglrlnin(ct (X, u] + };[Ut-i-l BlX,u,z]l]), ()

where v; : B — R is called the value function for stage t.
Computing the value functions and control policies is chal-
lenging, because in general they cannot be expressed in para-
metric form as the belief space B is infinite-dimensional.

Problem Definition

We will consider POMDPs in which the state, action, and
observation spaces are continuous and the belief &; =

N[x¢,%¢] is assumed to be a Gaussian distribution with
mean Xx; and variance ;. Specifically, we assume that
X = R”, U = R™, and Z = R*, and that we are given
a (non-linear) stochastic dynamics and observation model:

mNN[()?M[xhut]L (6)
n ~ N[0, N[x]], (7

X1 = fx¢, wy] + m,
z; = h[x;] + n,

where m and n are the motion and sensor noise, respec-
tively, drawn from independent Gaussian distributions with
zero mean and state and control input dependent variance.
Similar to the general POMDP case, our objective is to
find control policies u; = 7 [X;, 3| for all stages ¢ that min-
imize the objective function of Eq. (2), for given immediate
cost functions ¢y[X, 3] and ¢;[%, X, u]. In our case, we re-
quire in addition positive-(semi)definiteness for the Hessian
matrices of the immediate cost functions for all 0 < ¢ < £:
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Further, we assume that the initial belief N[, 2] is given.

3 Approach

Our approach computes a locally optimal solution to the
continuous Gaussian POMDP problem as formulated above.
In our approach the belief dynamics are approximated using
an extended Kalman filter, and the value function is approx-
imated by a function that is quadratic in the mean and lin-
ear in the variance of the belief, and that is locally valid in
the vicinity of a nominal trajectory though the belief space.
A belief-space variant of LQG (linear-quadratic Gaussian)
control is used to perform value iteration, which results in
control policies that are locally valid around the nominal tra-
jectory. A locally-optimal solution to the POMDP problem
is then found by iteratively generating nominal trajectories
through execution of the control policies, and repeating the
process until convergence. We discuss each of these steps in
this section, and analyze the running time of our algorithm.

Belief Dynamics and the Extended Kalman Filter

Given a current belief AV[X;, 3], a control input u;, and a
measurement z;; 1, the belief evolves using a Bayesian filter.
We approximate the Bayesian filter by an extended Kalman
filter (EKF), which is applicable to Gaussian beliefs. The
EKF is widely used for state estimation of non-linear sys-
tems (Welch and Bishop 2006), and uses the first-order ap-
proximation that for any vector-valued function f[x] of a
stochastic variable x we have:

E[f[x]] ~ f[E[x]).
Varlff) ~ O [Bd) - Varlx] - TERT. )

Given X; and X; that define the current belief, the EKF
update equations are given by:

Xe1 = F[%e, wy] + Ky (2441 — h[f[%X¢, u]]), (10)

Y1 =Ty — KeHi Ty, (11)



where
Ff = AtEtA? + M[)A(t, ut],
K, =T.HI' (H,T HI + N[f[%;,u;]]) " ?,

of oh . .
A= o ew], He= o[, ]

Equations (10) and (11) define the (non-linear) belief dy-
namics. The second term of Eq. (10), called the innovation
term, depends on the measurement z;;. Since the mea-
surement is unknown in advance, the belief dynamics are
stochastic. Using Eq. (7) and the assumptions of Eq. (9), the
innovation term is distributed according to N[0, K; H,T';].
In summary, the stochastic belief dynamics are given by:

)A(t_;'_l = f[fct,ut] —|—W7 WNN[O,W[)A(uEt,ut]], (12)

Y1 = q’[§<t72t7ut]7 (13)
where:
W[fiu X, ut] = K HI'y, ‘I)[f(ty i, ut] =1y — K H;T;.

Note that in the deterministic part of the belief dynamics, the
mean X; 1 is not a function of the variance 3;. Also, only
the evolution of the mean in the belief dynamics is stochas-
tic. These precise conditions allow us to maintain the in-
variant that the value function is quadratic in the mean, and
linear in the variance, as we see below.

Value Iteration

We perform value iteration backward in time to find a lo-
cally optimal control policy, in which the value function
ve[X, X] is represented as a function that is quadratic in
the mean x and linear in the variance X of the belief, and
is approximately valid around a given nominal trajectory
in belief space. Let the nominal trajectory be given as a
series of beliefs (means and variances) and control inputs
(X0, X0, U, - - - , X¢, 2¢, Ug) such that X, 1 = f[X;, ] and
Y1 = O[xy, Et, w] fort € 0...¢—1 (we will discuss ini-
tialization and iterative convergence of the nominal trajec-
tory to a locally optimal trajectory in the next subsection).
The value function then has the following form:
Ut[)A(, E] ~ St + %()A( — it)TSt()A( — )Et) + ST()A( — if) +
t1 vec[Z — 4], (14)
with S; > 0. The notation vec[X] refers to the vector
formed by stacking the columns of the matrix X. The value
function is of a similar form as the cost-to-go function in
LQG control, with the key difference that a linear term in
the variance of the state is added.

For the final time ¢ = /, the value function v, (see Eq. (3))
is approximated by setting

_ = 8204 _ =
s¢ = co[Xe, Xe), S = 7%0% [Xe, X¢],
Ocp . = Jcy .
T _ T _
¢ — 9% [X[7 ZEL t[ 8V€C[E] [X@, 25]7 (]5)

which amounts to a second-order Taylor expansion for the
mean and a first-order Taylor expansion for the variance of
c¢ around the endpoint of the nominal trajectory. The value
functions and the control policies for the stages ¢ > ¢ > 0
are computed by backward recursion; combining Eqgs. (4),
(12), (13), and (14) gives:

ve[%X, X] = miny, (ct %X, 2, u] + Ew[st41 +
%( %u] +w — %) S (Fx u) + w — %441) +
e (f

[, u] + W — Xep1) + b1, vec[@[%, 2, u] — 5y44]])

= miny (¢ [%, 2, u] + s¢41 +
L(E[%, 0] — %e1) T S (% u] — Xep1) +
T, (F[%, ]
L vec[Si1]" vec[W[x, £, u])), (16)

where the last term in Eq. (16) follows from the fact that
ExTQx] = E[x]TQE[x] + tr[Q Var[x]] for any stochas-
tic variable x, and that tr[QX] = vec[QT]T vec[X]. It is
this term that ensures that the stochastic nature of the belief
dynamics is accounted for in the value iteration.

To approximate the minimizing value of u, we linearize
the belief dynamics, and quadratize (for the mean and con-
trol input) and linearize (for the variance) the immediate cost
function about the nominal trajectory. Given that X, =
f[)_(t, l_lt] and Et+l = (I)[)_(t, Zt, ﬁt], we get:

f[f(,u] _)_(t+1 th()i—it)+Gt(u—ﬁt), (17)
vec[@[f(, E, ll] — 2t+1] ~ E()A( — it) + Ut VeC[Z — St] +

— Kpy1) + bl vec[®[X, B u] — By +

Vi(u— 1), (18)
vec[W[X, S, u]] = y; + X¢ (% — %¢) + Yy vec[X — 3] +
Zi(u —1y), (19)
N ~ 1 )A(—Xt Qt PT )A(—)_(t
Ct[szau]NQt‘i‘Q{u_uJ [Pt Rtt u— iy +
T .
X—X
[gtt] {u ut} + p! vec[S — %], (20)
where
of of
F = % ——[Xe, @y, Gy = 87u[it7ﬁt]7
0 vec|® — O vec
t = VaTH[it,Et,ﬁtL Ui = 8360{ %[Xtvztvut]
O vec|® - O vec|W
t = Vaiu[][imzt,ﬁt], X = V8)£ ][Xtazhut]
0 vec[W - O vec[W .
t = M[Xhzt,ut}y Zy = V81£ }[Xtaztaut]
yi = vec[W[Xy, B¢, ], @ = ci[Xe, Sy, ),
d%c Oc -
Qt = axiai[xtyzt,ut} th = 8:5 [Xtaztaut]
e — Oc _
Ry = 8u6;[it’2t’ut]’ r; = afl;[xuzt?ut]
8201/ = T 8ct =
Pt - M[XtaztautL pt - 3\/6(:[2} [Xtaztaut]

Filling in Egs. (17)-(20) into Eq. (16), we get:

T
S Lix—x| [Cy Ef||x—%
v %, X] ~ min (et T3 {u - UJ |:Et Df|u-u| "

T
Lﬁj B_ﬂ +e7 vec[E — zt}) 1)



where:

Cy=Q + FtTSt+1Ft, D; =R + G?St+1Gt>

B, =P +GlS, . \F, e = qt+st+1+% vee[Siy1]" e,
cf =ai +si By +t00 Ty + 5 vec[Sen] T Xy,

df =r} +s/,G+t1, Vi + %VeC[StJrl]TZta

el =p! +t/,Ui+ 5 vec[Si1]" Y2 (22)

The minimizing u is then found by taking the derivative with
respect to u and equating to 0. This gives the solution:

u:Lt(fc—ict)—&—lt—Fﬁt, (23)

with L; = th_lEt and 1; = th_ldt, which defines the
control policy u = [, 3| for stage t.

Filling Eq. (23) back into Eq. (21) gives the value function
v¢[%, X for stage ¢ in the form of Eq. (14), with:

St = €¢ + %d?lt, St = Ct + L?Et,
sl =c' +17E,, tl =el. (24)

This recursion then continues by computing the control pol-
icy and value function for stage ¢t — 1.

Iteration to a Locally-Optimal Control Policy

The above value iteration gives a control policy that is valid
in the vicinity of the given nominal trajectory. To let the
control policy converge to a local optimum, we iteratively
update the nominal trajectory using the most recent control
policy (Todorov and Li 2005; Jacobson and Mayne 1970).
Given the initial belief X, ¢, and an initial nominal trajec-

tory ()2(()0), 2(()0)’ 1’1(()0), . ,)’(éo), Séo), ﬁ&o)) such that )2(()0) =
fo. 50 25 and 50 2 £ o) and 510,

@[)’(io), SEO), ﬁff’)} for 0 <t < ¢, we proceed as follows.

Given the nominal trajectory of the 7—1’th iteration (start-
ing with ¢ = 1), we find the control policy, i.e. the ma-
trices L; and vectors 1, using the value iteration procedure
described above. We then compute the nominal trajectory
()’(éz), 2(()17 ﬁéz), . ,)’(EZ), f]((f), ﬁ;z)) of the 4’th iteration by
setting )’(E,Z) = X( and Eéz) = Yo and forward integrating
the deterministic belief dynamics (for 0 < ¢ < ) using the
computed control policy:

! = L) 5 7) 1

% =il m = ek S es)

We then recompute the control policy, and reiterate. This
lets the control policy converge to a local optimum (Liao and
Shoemaker 1991)." We note that upon convergence the vec-
tors 1; have become 0, so the ultimate result of the algorithm
is a nominal trajectory and a linear control policy of the form
Uy = Ft[)A(t] = Lt()A(t - )_Ct) + l_lt.

'To ensure that the iteration in fact converges to a locally-
optimal control policy, the algorithm is augmented with line search
such that a new nominal trajectory is only accepted if it has a lower
expected cost than the current nominal trajectory.

Time and Space Complexity Analysis

Let us analyze the running time of our algorithm. The di-
mension of the state is n, hence the size of its variance is
n2, and we assume that the dimensions of the control input
u and the measurement z are O|[n]. Further, we assume that
the functions f and h can be evaluated in O[n?] time (this
is the case if they were linear), that the functions M and N
can be evaluated in O[n?] time (this is the case if they were
linear), and that the immediate cost functions c¢; can be eval-
uated in O[n?] time (this is the case if they were quadratic
in the mean and control input, and linear in the variance).

As a result, the functions ® and W each take O[n?] time
to evaluate: they both involve performing a step of the ex-
tended Kalman filter, in which the Jacobians A; and H; are
computed. Using numerical differentiation, this takes O[n?]
time. The EKF further involves a constant number of multi-
plications and inversions of matrices of dimension O[n X n],
which can also be done in O[n?] time.

In each step of the value iteration, the belief dynamics are
linearized and the immediate cost function is quadratized for
the mean and the control input, and linearized for the vari-
ance, which involves computing the Hessian and Jacobian
matrices of Egs. (17)-(20). Using numerical differentiation,
the matrices F; and G can be computed in O[n?] time and
Ty, Vio X, Zt, Qy, Ry, and P, can be computed in O[n?]
time. Computing the matrices U; and Y; using numerical
differentiation would take O[n®] time, but it turns out that
for each of the n? columns of U; and Y; we can find an an-
alytic expression that takes O[n?] to evaluate. So also U,
and Y; take O[n*] time to compute. The vectors y;, q;, and
r; are computed in O[n?] time, and p; takes O[n?] time to
compute. Lastly, the scalar ¢, is computed in O[n?] time.

Other computations in each step of the value iteration are
a constant number of multiplications and inversions of ma-
trices. The most costly operations are the multiplications of
an n? x n? matrix (U; and Y;) with a vector of dimension
n? (t;11 and vec[S;, 1], respectively) in Eq. (22). This takes
O[n?] time. All other matrix multiplications and inversions
can be computed in at most O[n?] time. Hence, the total run-
ning time for a single step of the value iteration takes O[n?]
time. A complete cycle of value iteration takes ¢ steps (£
being the time horizon), bringing the complexity to O[¢n*].
The number of value-iteration cycles needed to obtain con-
vergence cannot be expressed in terms of n or £.

In the exposition of our algorithm, all matrices and vectors
that appear are of size at most O[n?], except for the matri-
ces Ty, Vi, Xy, and Z;, which are of dimension O[n? x n]
(hence size O[n?]), and the matrices U; and Y;, which are of
dimension n? x n? (hence size O[n']). Since these matri-
ces are pre-multiplied by a vector in all computations where
they appear, and since they are computed column by column
(each of O[n?] size), we never need to store them in mem-
ory in their entirety, but only a column at a time. Hence, the
total storage requirement of our algorithm is O[n?] per step
of the value iteration, and O[¢n?] in total, since all matrices
L; and ¥ (for 0 < ¢ < £) are stored in memory. We further
note that in our implementation we exploit the symmetry of
the matrices .S, X, ®, and W to reduce the running time and
storage requirements by a constant factor.



4 State Constraints and Obstacles

We presented our approach above for general immediate
cost functions c¢¢[X, Y] and ¢:[%X, %, u] (with the require-
ments of Eq. (8)). In typical LQG-style cost functions, the
existence of constraints on the state (e.g. due to obstacles
in the environment) is not incorporated. To consider con-
straints and maximize the probability of satisfying them, we
incorporate constraints into the cost functions as follows.

Let F C X be the valid region of the state space defining
the constraints on the state. Given a belief X, 3, the prob-
ability of satisfying the constraints, is given by the integral
over [ of the probability density function of A%, X]. We
approximate this probability as follows. First, we choose a
maximal convex region in F around the current belief, re-
sulting in a set of linear constraints {a’x < b;}. The prob-
ability that constraint ¢ is satisfied is given by:

plal'x < b;] = cdf[(b; — al' x)/\/a] Sa;], (26)

where cdf : R — R denotes the cumulative density function
of the standard Gaussian distribution A/[0, 1]. The probabil-
ity that all constraints are satisfied is approximated by:

plVi : al' x < b;] ~ [, cdf[(b; — al %)/+/al Ta;], (27)

and this number should be maximized. To fit this objective
within the minimizing and additive nature of the POMDP
objective function, we note that maximizing a product is
equivalent to minimizing the sum of the negative logarithms
of the factors. Therefore, we add to ¢;[X, 3, u] the term

fI%, 2] = =7, logledf[(b; — a] %) //al Ta;]]  (28)

to account for the probability of violating constraints. We

note that a{fg& > 0, as is required by Eq. (8).

5 Results

We evaluate our approach in simulation for robot naviga-
tion scenarios involving continuous state, action, and ob-
servation spaces with stochastic dynamics and observation
models with state and control-dependent noise and spatially-
varying sensing capabilities. We consider two scenarios: (i)
an n-D point robot with linear dynamics that uses beacon-
based localization, and (ii) a 4-D under-actuated car-like
robot with second-order dynamics navigating in a 2-D en-
vironment. The method was implemented in C++ and eval-
uated on a 3.33 Ghz Intel® i7™ PC.

In the following experiments, we define the immediate
cost functions of Eq. (2) to be:

cel%e, Be] = X[ Qeke + tr[QeSy], (29)
%o, o) = ul Rywy 4 tr[Q %] + f%e, 2], (30)

for given @; > 0 and R; > 0. The term X} Q¢X¢ +
tr[QeX¢] = E[x! Qx(] encodes the final cost of arriving
at the goal, u! Ryu; penalizes the control effort along the
trajectory, tr[Q:X;] penalizes the uncertainty in the state,
and f[X:, Y] encodes the state constraint/obstacle cost (if
applicable).

(a) 1D (b) 2-D (c) 3-D

Figure 1: A point robot navigating to the origin (shown in green)
in an n-D unit hypercube with beacon-based localization (beacon
shown in blue). (a) 1-D scenario where the beacon and initial state
of the robot are on opposite sided of the goal. The variance is
indicated by the error bars. The robot goes to the beacon before
backtracking to the goal. (b) 2-D scenario, and (c) 3-D scenario,
where the robot localizes itself at the beacon before reaching the
goal with significantly reduced uncertainty (variance indicated us-
ing error ellipsoids).

n-D Point Robot With Beacon-Based Localization

To evaluate the scalability of our approach, we consider a
point robot navigating in an n-D unit hypercube centered at
the origin, with the following stochastic dynamics model:

xpp1 = f[xg, we] + m = x; + 7u; + m, (31)

where x; € R" is the robot’s position, u; € R" is the robot’s
velocity, 7 is the time step, and the noise m ~ N[0, M [u]]
is scaled proportional to the control input uy.

We consider a partially-observable scenario where the
robot localizes itself using signal measurements from a bea-
con placed in the environment at location X. The signal
strength decays quadratically with the distance to the bea-
con. For the purposes of constructing an observation model
that scales to arbitrarily high dimensions, we normalize the
signal strength relative to the length of the longest diagonal
of a n-D unit hypercube. This gives us the following non-
linear observation model:

zt:h[xt]+n=n/(1+||xt—5c||§)—|—n, (32)

where z; € R is the signal strength reading, and the obser-
vation noise n ~ A[0, N| has constant variance.

In our experiments, the goal is placed at the origin, the
robot is initialized with a belief state that consists of a ran-
domly sampled mean within the unit hypercube and a vari-
ance of 0.1/. The location of the beacon is also chosen at
random. We use control and state cost matrices of Ry = I,
Q¢ = 10I, and Q, = 1041 where ¢ = 15. We initialize
the method with a straight-line nominal trajectory from the
mean of initial belief to the goal. Due to high initial uncer-
tainty in position, the optimal strategy for the robot is typ-
ically to move to the beacon for precise localization before
moving the goal (Fig. 1).

We evaluate the scalability of our approach with respect
to the dimension of the state space. Fig. 2 shows the time
required per iteration of our method as the dimension of the
state space increases from 1 to 128, averaged over 100 ex-
periments per dimension. The growth in the average time
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Figure 2: The average time per iteration (ms) as a function of the
dimension of the state space (1-128) for our new O[n*] method
(blue) and a previous O[n”] method based on DDP (van den Berg,
Patil, and Alterovitz 2011) (green). Our more scalable new method
enables us to solve problems with significantly higher-dimensional
state spaces.

per iteration (in milliseconds) is bound by the predicted
O[n?] complexity. We also compare our method against a
O[n"] approach based on differential dynamic programming
(DDP) (van den Berg, Patil, and Alterovitz 2011). The av-
erage time per iteration of our method is considerably lower
and scales favorably as the state space dimension increases
as compared to prior work. Our approach is able to com-
pute locally-optimal solutions in continuous spaces within
minutes on commodity hardware for up to 128 dimensions.

Table 1 provides more detail for some of the lower-
dimensional experiments, and shows that the average num-
ber of iterations and total computation time increases as the
dimension increases. It should be noted that even though the
DDP-based approach demonstrates quadratic convergence
(Liao and Shoemaker 1991) and requires a lesser number of
iterations on average as compared to our approach, it does
not scale well to higher dimensions.

Our method (O[n"]) DDP (O[n"])
Dim Num Total Num Total
iterations time (ms) iterations time (ms)

1 13 (£ 4) 9(£3) 7(+2) 28 (+9)
2 31 (£98) 40 (£ 11) 18 (£ 6) 203 (£ 72)
4 48 (£ 15) 146 (+ 44) 20 (£ 11) 817 (£ 419)
8 60 (+ 14) 575 (£ 132) 25(£8) | 9.4e3 (£ 2.3e3)
16 || 72 (£ 13) | 3.7e3 (£ 640) || 29 (£ 12) | 1.8e5 (+ 7.5¢4)
32 88 (£ 19) | 2.9e4 (£ 6.2e3) No solution found

Table 1: Comparison of our method with prior work over 100
experiments. Standard deviations provided in parentheses.

4-D Under-Actuated Car-Like Robot

We consider the case of a non-holonomic car-like robot nav-
igating in a partially-observable 2-D environment with ob-
stacles. The state x = (z,y,6,v) € R* of the robot consists
of its position (z,y), its orientation 6, and speed v. The
control input vector u = (a, ¢) consists of an acceleration
a and the steering wheel angle ¢. This gives the following
stochastic non-linear dynamics model:
Ty + Tug cos Oy
Y + TV Sin 6
X1 = flx, w] +m = 0 + Tv, tan[gy)/d
v + Tag

+m, (33)

(b) Optimal trajectory

(a) Input trajectory

Figure 3: Under-actuated car-like robot navigating to the goal
(shown in green) in a partially-observable environment with ob-
stacles and beacon-based localization (beacons shown in blue).
(a) Naive collision-free trajectory computed using an uncertainty-
unaware planner accumulates considerable uncertainty, increasing
the risk of collision in the narrow passage. (b) The locally optimal
solution guides the robot to both beacons before arriving at the goal
through the narrow passage with considerably reduced uncertainty.

where 7 is the time step, d is the length of the car-like robot,
and m ~ N[0, M [u;]] scales the noise proportional to the
control input u;. The measurement vector z; € R3 consists
of two signal measurements from two beacons placed in the
environment (similar to the beacon considered above) and a
speed measurement from a speedometer:

/(1 + || )~ %

1
z; = h[x+n = [1/(1+ [|(z¢, y:)" — %o
Ut

)
)| +n, 34)

DN DN

with constant measurement noise variance n ~ N[0, N].
Our method takes as input a collision-free nominal trajec-
tory to the goal computed using an RRT planner (LaValle
and Kuffner 2001), which only generates a path and does
not consider uncertainty. If the robot were to follow this in-
put trajectory in an open-loop fashion, noisy actuation would
likely result it collision with an obstacle before reaching the
goal (Fig. 3(a)). Our method improves the input trajectory
to compute a locally-optimal trajectory and a correspond-
ing control policy that safely guides the robot to the goal
(Fig. 3(b)). Notice how the optimal trajectory visits both
beacons for reliable localization. The nominal trajectory tra-
verses the narrow passage along the medial axis and the re-
mainder of the nominal trajectory is revised to stay away
from the boundaries of the environment, to minimize like-
lihood of colliding with obstacles. It took 4.84 seconds to
converge to the locally-optimal solution over 52 iterations.

6 Conclusion and Future Work

We presented a highly efficient algorithm for solving contin-
uous POMDPs in which beliefs can be modeled using Gaus-
sian distributions over the state space. Our approach per-
forms approximate value iteration over the belief space with
a running time that is only O[n?] in the dimension n of the
state space, which we showed enables solving problems with
state spaces of up to 128 dimensions. Further, our approach
generalizes earlier work on Gaussian-based POMDPs by re-
moving the assumption that maximum-likelihood observa-
tions are received.

Our approach has several limitations. First, we represent
beliefs using Gaussian distributions. This may not be an ac-
ceptable approximation in some applications, for instance



where multi-modal beliefs are expected to appear. However,
the class of problems where Gaussian distributions are ap-
plicable is large, as is proven by the widespread use of the
extended Kalman filter for state estimation and our approach
should be directly applicable in such applications. Second,
we require the dynamics, observation, and cost functions to
be smooth, since our method relies on gradients to iterate to-
wards a locally optimal solution. Our approach would there-
fore not work directly in some experimental domains where
there are abrupt boundaries between sensing regimes (e.g.
inside or outside the field of view of a camera).

In future work we plan to apply our method to real-world
problems that involve complex dynamics and that would
benefit from a fast continuous Gaussian POMDP solver, in-
cluding autonomous quadrotor flight, medical needle steer-
ing, and manipulation of deformable tissue.
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