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Abstract— Concentric tube robots may enable new, safer
minimally invasive surgical procedures by moving along curved
paths to reach difficult-to-reach sites in a patient’s anatomy.
Operating these devices is challenging due to their complex,
unintuitive kinematics and the need to avoid sensitive structures
in the anatomy. In this paper, we present a motion planning
method that computes collision-free motion plans for concentric
tube robots at interactive rates. Our method’s high speed
enables a user to continuously and freely move the robot’s
tip while the motion planner ensures that the robot’s shaft
does not collide with any anatomical obstacles. Our approach
uses a highly accurate mechanical model of tube interactions,
which is important since small movements of the tip position
may require large changes in the shape of the device’s shaft.
Our motion planner achieves its high speed and accuracy by
combining offline precomputation of a collision-free roadmap
with online position control. We demonstrate our interactive
planner in a simulated neurosurgical scenario where a user
guides the robot’s tip through the environment while the robot
automatically avoids collisions with the anatomical obstacles.

I. INTRODUCTION

Concentric tube robots are tentacle-like robotic devices de-
signed for minimally invasive surgery. Their curving ability
and small size allow them to reach anatomical sites inacces-
sible to traditional, straight surgical instruments. Concentric
tube robots may enable new, safer surgical access to many
sites in the human body, including the skull base [1], the
lungs [2], and the heart [3].

These robots are composed of thin, pre-curved, elastic
tubes that are nested within one another. The device’s
maneuverability is enabled via telescopically inserting and
rotating each tube, causing the entire robot’s shape to change.
This powerful shape-changing property also poses a major
challenge: unintuitive kinematics determined by mechanical
interactions between the device’s curved elastic tubes. A
physician would therefore find it nearly impossible to safely
and accurately guide the robot to perform a surgical task by
manually rotating and inserting each tube.

We look to computation to enable intuitive guidance by a
physician. Kinematic modeling of concentric tube robots has
made great strides recently, allowing for enough speed and
accuracy in shape computation to achieve interactive position
control of the robot’s tip [5], [6], [7]. However, these methods
do not account for obstacles. Collisions with anatomical
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Fig. 1. Virtual simulation of a concentric tube robot being controlled with
a SensAble Phantom Desktop [4]. Our interactive motion planner enables
the user to move the robot’s tip while ensuring that the robot’s entire shaft
avoids contact with known sensitive anatomical structures.

obstacles can increase risk to the patient and can bend the
device unpredictably, impeding effective control. Requiring
a physician to enforce collision avoidance when using a
position control interface places a significant burden on the
physician. Furthermore, even if the physician successfully
steers the tip clear of obstacles, reaching for a given tip
position can cause a dramatic change in the robot’s shape,
potentially causing collision of the robot with anatomical
obstacles.

We present a motion planner that computes collision-free
plans for concentric tube robots at interactive rates. We
assume a pre-operative image (e.g., CT scan or MRI) is
obtained prior to the procedure, as is common for surgery.
From these images anatomical obstacles can be segmented
[8]. Our interactive-rate motion planner can potentially allow
a physician to continuously specify a desired tip location for
the concentric tube robot using a 3D mouse (e.g., a SensAble
Phantom [4]), and the robot can interactively respond by
reaching the desired tip position while ensuring that the entire
device shaft avoids anatomical obstacles.

Achieving interactive-rate motion planning for concentric
tube robots is complicated by their kinematics. Accurately
evaluating the robot’s kinematics is critical for obstacle



avoidance. However, accurately estimating the robot’s shape
requires solving a numerical system [9], [10] that is suf-
ficiently computationally expensive that previous motion
planners would be rendered too slow to be used interactively
during a procedure.

In this paper, we achieve interactive rates by creating
a motion planner specifically designed for concentric tube
robots that mixes precomputation and position control. In
our sampling-based motion planning approach, we begin
by precomputing a roadmap of collision-free paths in the
robot’s configuration space, and then search for paths on
this roadmap during the procedure. We then use a position
control method based on iterative inverse kinematics (IK)
to reach user-specified positions not exactly represented in
the precomputed roadmap. To link the sampling-based and
control approaches, the precomputed roadmap caches shape
information that is computationally expensive to compute
online, speeding up the iterative IK. This results in a method
that quickly computes collision-free motion plans to a region
of interest, and then uses fast position control to locally guide
the robot tip closer to the position specified by the physician.

We demonstrate our new interactive-rate motion planner
in a simulated neurosurgical scenario where a user specifies
3D positions via a 3D mouse and the planner interactively
computes control input trajectories to reach the specified
points while avoiding collisions with anatomical obstacles.

II. RELATED WORK

In order to accurately compute the shape of the concentric
tube robot, we need an accurate kinematic model. Kinematic
modeling of concentric tube robots has rapidly improved
in recent years, from torsionally rigid models [11], to tor-
sionally compliant models [10], [9], to models that consider
external loading [12], [13]. In this paper we use a highly
accurate model developed by Rucker et al. [6].

For our application, we are interested in planning collision-
free motions fast enough to interactively follow user inputs.
Rucker et al. and Xu et al. achieved fast tip position control
by quickly computing the manipulator Jacobian and using
damped least squares (DLS) IK [6], [7]. These position
control methods do not take obstacles into account and
may fail to converge to the desired goal position. Dupont
et al. produced fast tip position control by approximating
the robot’s kinematics with a Fourier series and using root
finding on this approximation to quickly evaluate IK [5]. This
approach feasibly allows for obstacle avoidance, but it does
not benefit from the robot’s redundant degrees of freedom to
consider alternate configurations for reaching goals.

To compute collision-free motion plans for concentric tube
robots, early work assumed simplified kinematic models
for fast performance [14], [15]. Torres et al. integrated a
mechanically accurate model of concentric tube robots into
a motion planner by combining a sampling-based roadmap
with Jacobian-based goal biasing [16]. However, the com-
putation time required for accurate robot shape computation
makes this approach too slow for interactive motion planning.

A related domain where interactive-rate planning is re-
quired is for dynamic environments, where motion plans
must be computed quickly enough to remain valid under
movement of obstacles. Approaches include re-use of paths
from prior planning iterations [17], [18], lower-dimensional
grid searches to guide the full-dimensional search [19], and
repairing paths precomputed in a static environment [20]. In
this paper, we assume static obstacles, but we are hampered
by kinematics computations that are too expensive for the
online planning and collision detection required by most
previous replanning methods. Our approach is most similar
to that of van den Berg et al. [20] in that we precompute a
collision-free roadmap offline to be used for online planning,
but we also add concentric tube robot shape caching and
iterative IK.

III. PROBLEM FORMULATION
A. Kinematic Modeling

We consider a concentric tube robot with /N telescoping
tubes numbered in order of increasing cross-sectional radius.
Each tube i consists of a straight segment of length [’
followed by a pre-curved portion of length [° and constant
radius of curvature r;. The device is inserted at a point X
along a vector vy, We assume that the start location X
and initial orientation vy, correspond to the orifice through
which the device is deployed based on the clinical procedure.

Each tube may be (1) inserted or retracted from the
previous tube, and (2) axially rotated, yielding 2 degrees of
freedom per tube. Hence, the robot’s configuration is a 2N
dimensional vector q = (6;,5; : i = 1,...,N) where 6,
is the axial angle at the base of the ’th tube and 3; < 0
is the arc-length position of the base of tube 7 behind the
robot insertion point X, Where X,y corresponds to the arc-
length value 0. The configuration space is Q@ = (S1)V xRY.,

For a given configuration q € Q, we represent the device’s
shape as x(q,s) : R?Y x R + R3. The function x is
a 3D space curve parameterized by s € [0,1]. We note
x(q,0) = Xgtart and x(q,1) maps to the 3D position of
the tip of the robot. To estimate the device’s shape x we use
the mechanics-based model developed by Rucker et al. [6].

B. Interactive-rate Motion Planning Problem Formulation

Our interactive-rate motion planner is intended for use by a
physician who operates the robot by continuously specifying
a new goal position X,u, for the robot’s tip. Our approach
repeatedly formulates a new motion planning problem using
the latest Xg,. Each problem is to compute a plan II,
denoted by a sequence of configurations IT = (q1,...,qn),
to move the robot from its current configuration q; to a
new configuration such that the robot’s tip x(q,, 1) is at the
given Xgoa. The plan must avoid anatomical obstacles, satisfy
kinematic constraints, be intuitive to the physician, and
should be computed sufficiently fast to enable interactivity.

Anatomical obstacles can be defined in any geometric rep-
resentation that enables computation of a predicate function
isCollisionFree(q) that returns true if the robot is free
of collisions at configuration q and false otherwise. In our



work we consider obstacles defined by 3D polygonal meshes,
which can be generated from medical image segmentations
[8].

In addition to requiring obstacle avoidance, we must also
constrain the set of valid tube insertion values 3 = (5;|1 <
i < N) due to limitations of the robot’s physical design.
The carriers that grasp the tube bases have thickness d;
they move on a track of length li,k; they cannot move
past one another; and our kinematic model [6] requires that
the inserted length of tubes increase with decreasing cross-
sectional radius. Hence, a configuration is considered feasible
only if the following hold (for N > 2):

- ltrack < ﬁla

Bic1+0<p; fori=2,...,N,

Bii + 1 T > B+ 1L fori=2,...,N, (1)

Bn < 0, and

By + 1L +1L>0.

Since the motion planner is being executed interactively,
the user may specify a goal position Xgo, that is unreachable
or for which a plan cannot be computed due to kinematic
constraints and the presence of obstacles. Our objective is
to compute a plan II* that minimizes the tip distance to the
target, i.e., minimize ||x(qn, 1) — Xgoall-

To reach q,, our method typically considers multiple
routes from q;. For intuitive motion, we select the plan for
which the distance traveled by the robot’s tip is smallest.
In some cases, moving from q; to q, cannot be done
by moving the tip along a straight line from x(qi,1) to
x(qp, 1) without the device’s shaft colliding with obstacles;
consequently, our method may at times partially retract the
device and then redeploy to the new goal. Such non-local
motions may be undesirable in some clinical scenarios, e.g.,
suturing. However, such motions are often necessary and
desirable (e.g., reaching a site for biopsy), and are available
to the physician using our approach.

IV. INTERACTIVE-RATE MOTION PLANNING

Our motion planning approach blends sampling-based
roadmap planning (for global routing through the robot’s free
configuration space) with an iterative IK solver (which makes
local adjustments for high accuracy).

Our method proceeds in two phases: a precomputation
phase followed by an interactive planning phase, as shown
in Fig. 2. In the precomputation phase, we generate a
roadmap using a variant of the rapidly exploring random
graph (RRG) [21], which we describe in Sec. IV-A. We cache
information in the graph data structure to facilitate interactive
performance during the actual procedure. In the interactive
planning phase, we use the roadmap combined with iterative
IK to compute a plan from the robot’s current configuration
to the new desired tip position specified using a 3D mouse.

A. Precomputation Phase

The input to the precomputation phase is a representation
of the anatomy (for collision detection), the design param-
eters of the robot (to accurately compute kinematics), and
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Fig. 2. Method overview.

the robot’s insertion location and direction. The output of
the precomputation phase is a precomputed roadmap with
cached data that will facilitate interactive planning.

In our system, we precompute one roadmap and use it
for multiple motion planning queries during the procedure.
The roadmap G consists of a set of nodes V' corresponding to
collision-free robot configurations and a set of directed edges
E encoding collision-free motions between the configura-
tions. Since anatomical environments relevant to concentric
tube robot robots are highly constrained, large portions of the
configuration space are not reachable from a given insertion
point. Hence, we grow our roadmap from a given starting
state using a modified RRG.

The RRG algorithm builds a roadmap by beginning at
a given starting configuration, and only adds configuration
samples to the graph that can be connected by a collision-
free motion to the roadmap. RRG also refines the roadmap
by adding edges in a way that guarantees asymptotic op-
timality of plan quality under certain assumptions. After
executing our customized RRG algorithm for some number
of iterations, the result is a roadmap that can be quickly
queried for high-quality collision-free plans between any two
configurations in the roadmap. We then save the roadmap to
the hard disk in a format that can be quickly reloaded for
use during the surgical procedure. Next, we describe our
customizations to RRG that enable fast motion planning for
concentric tube robots.

1) Distance Metrics for Roadmap Construction: The
canonical RRG algorithm uses a given distance metric d :
Q x Q@ — R for (1) sampling a new configuration q
to add to the roadmap, i.e., roadmap expansion; and (2)
selecting a set of configurations Q.. near q to check for
collision-free connections, i.e., roadmap refinement. In our



roadmap generation method, we use two distinct distance
(pseudo)metrics for each of these roadmap operations.

For roadmap expansion, we use a weighted Euclidean dis-
tance in configuration space in order to take advantage of the
fast exploratory properties of the Voronoi bias [22] offered by
RRG. This biases expansion toward unexplored configuration
space regions to find alternative ways of reaching 3D points.

For roadmap refinement, motion planners often use Eu-
clidean configuration space distance, but we found that this
metric can result in unintuitive tip motion. For instance,
attempting to move the robot’s tip a small amount may
result in a motion plan where the tip takes a large, sweeping
path to the goal. This is because a small tip movement can
sometimes require a large change in the robot’s configuration.
Even if there exists a motion to directly move the robot tip to
the nearby goal, that motion may have not been considered in
roadmap refinement because it was not considered to connect
two “near” configurations under weighted Euclidean dis-
tance. To address this issue, we define nearness for roadmap
refinement to be the distance between the 3D tip positions of
each configuration, or dip(q1,q2) = ||x(a1,1) — x(q2,1)||.

2) Anatomy-based Collision Detection: When adding a
configuration or edge to the roadmap, the planner must
check that configurations are collision-free. This requires
evaluating whether the shape of the robot x is in collision
with an obstacle in the environment. We use a mechanically
accurate kinematic model [6] of the robot to compute x.
We define the anatomical obstacles that the robot should
avoid as a 3D polygonal mesh, which can be generated via
segmentation from a patient’s preoperative medical imaging
[8]. We evaluate isCollisionFree(q) using PQP [23], a
fast collision detection algorithm that enables us to check for
intersections between the anatomy meshes and a 3D mesh
we quickly generate on-the-fly of the robot shape x. We
check edges (qi,q2) for collisions by interpolating from q;
to g2 and collision-checking configurations along the way in
isCollisionFree(qi, qz).

3) Caching Shape Computations: In order to speed up
offline roadmap computation and online position control,
we store additional information about previous robot shape
computations in each node of the roadmap. Computing the
robot’s shape requires solving for the initial conditions of
a boundary value problem [6]. We store the solved initial
conditions for each configuration in the roadmap so that they
can be used as initial guesses for future shape computations
of nearby configurations; this resulted in a 2.5x average
speedup for shape computations.

4) Enforcing Constraints Due to Robot Design: We must
ensure that our roadmap only includes feasible robot con-
figurations, i.e., configurations must satisfy the constraints
in Eq. 1. In order to sample only configurations that satisfy
the constraints, we use rejection sampling. We continually
sample from a set of box constraints that tightly contains the
true set of valid configurations and reject those samples that
violate the constraints of Eq. 1. Depending on the design of
the robot, as many as 20,000 samples can be rejected before
finding a valid configuration. Although this seems inefficient,

the rejection sampling procedure takes orders of magnitude
less time than a single kinematic model computation.

We define the motion along an edge of the roadmap to be
a linear interpolation between the two configurations. This
linear interpolation works well with the constraints defined
in Eq. 1 because they form a convex set, which means that if
two given configurations q; and qs lie within the constraints,
then all configurations along the linear interpolation between
q1 and q2 also fulfill the constraints.

B. Interactive Planning Phase

The inputs to the interactive planning phase are the robot’s
kinematic model, the precomputed roadmap with associated
cached data structures, and anatomical obstacle meshes.
During the interactive planning phase the user continuously
specifies new desired tip positions. The objective of our
method is to compute robot motion plans that enable the
robot’s tip to follow the specified motion of the user.

The interactive planning phase operates in a loop, as
shown in Fig. 2. The system first obtains the new desired
tip position Xgo, from the 3D mouse controlled by the user.
The system then computes a motion plan from its current
configuration to a new configuration such that the tip reaches
Xgoal- The motion plan is then sent to the robot for execution,
and the cycle repeats with a new tip position sent by the
user. The motion planner must be fast enough for the robot
to immediately begin plan execution upon the physician’s
selection of a new desired goal position.

1) Computing a Motion Plan: We illustrate our combined
roadmap planning and IK algorithm in Alg. 1. When a
new tip goal position is sent to the planner, the robot’s
current configuration may not lie exactly on the roadmap
(we will explain why in a moment). Therefore, the algorithm
first decides whether to “step back into” the precomputed
roadmap by checking whether there is a configuration in
the roadmap closer to the goal than the robot’s current
configuration. To do this we find the configuration in the
roadmap nearest to the goal using the nearestTip routine,
which uses a highly efficient nearest neighbor search [24] as
implemented in the Open Motion Planning Library (OMPL)
[25]. If progress toward the goal can be made by following
the roadmap, we use an A* graph search [26] to find the
shortest motion plan on the roadmap to the node nearest the
goal. We use dy, from Sec. IV-A.1 as our cost function and
heuristic to A* to encourage plans with intuitive tip motion.

In order to reach the goal with sufficient clinical accuracy,
we likely need to “step out” of the precomputed roadmap. We
guide our step using the DLS_IK routine which implements
the damped least squares (DLS) IK algorithm [27], [28].
With some problem-specific hand-tuning of the DLS param-
eters, DLS typically converges to sufficient accuracy within
5 iterations. When stepping into and out of the roadmap, we
always perform an online collision check to ensure that the
robot avoids contact with anatomical obstacles throughout
the procedure.



Data: Preprocessed roadmap G with vertices and edges
(V, E'), anatomical obstacle meshes, current robot
state q; with tip position x;, and new desired tip
position Xgoal

Result: Sequence of states II describing collision-free

motion from q; to a state with tip position as
close as possible t0 Xgoal

IT < (q1);

qr < nearestTip (Xgoal, V) ;

X, < getTipPos (q,);

if |X, — Xgoal|| < [|X1 — Xgoa1|| then

Qnear ¢ nearestTip (x1, V),

if isCollisionFree (qi, Quear) then
I, « AstarPath (G, Quear 9r);
append (I1, IL,.) ;

qik < DLS_IK (lastElement (II), Xgoal);

append (II, qik) ;

return I

Algorithm 1: Our combined roadmap and position con-

trol planning algorithm in the interactive planning phase

V. EVALUATION

We now demonstrate an example usage of our interactive
motion planner on a simulated neurosurgical scenario and
report results of some performance benchmarks. All compu-
tation was performed on a 2.4 GHz Intel®Xeon Quad-Core
PC with 12 GB RAM.

A. Neurosurgical Scenario

Skull base tumors make up 15-20% of all primary brain
tumors [29]. An endonasal approach to the skull base can
save the physician from cutting healthy brain tissue, but many
areas of the skull base are challenging to reach with currently
available surgical devices. Concentric tube robots can curve
around obstacles to navigate hard-to-reach anatomical cavi-
ties, potentially enabling treatment for previously inoperable
patients.

To evaluate our interactive motion planner, we created
a scenario that involves navigating a concentric tube robot
through the anatomy encountered during an endonasal proce-
dure. We used a 3D mesh model of the human nasal cavity
and skull base (see Fig. 3), which we modified to reflect
real-world neurosurgical conditions by removing part of the
sphenoid bone to allow access to the sella. We used this mesh
to generate the roadmap of collision-free plans as described
in Sec. IV-A.

We implemented an interactive simulation of the neurosur-
gical scenario that visualizes a concentric tube robot navigat-
ing the nasal cavity model under the direct control of the user.
The user can control the tip of the simulated robot by using a
SensAble Phantom Desktop [4] to continually specify desired
3D tip positions for the robot to reach. Our implementation
iteratively reads the position of the 3D mouse, executes
the interactive planner, and visualizes the robot moving to
the new tip position. The planner executes fast enough to
provide intuitive, user-directed tip motion while keeping the

Fig. 3.

3D model of the nasal cavity and skull base used for collision
detection during generation of the roadmap of collision-free concentric tube
robot motion plans. Frontal view is on the left and view from above is on
the right.

robot safely in the bounds of the anatomical workspace. We
provide snapshots of a neurosurgical simulation session in
Fig. 1 and Fig. 4.

B. Experimental Evaluation

To quantitatively evaluate the performance of our new
interactive motion planning method, we compared it against
two related methods that each lack a key component of our
combined method:

e Roadmap only: Use a precomputed roadmap to guide
the robot toward each new goal, but do not use iterative
IK to step off the roadmap for additional accuracy.

o IK only: Use only iterative IK to move the robot’s tip to
each goal. If an iterative IK step will cause a collision,
motion stops at the last safe configuration.

For the roadmap-based methods, we precomputed a
roadmap for the neurosurgical scenario based on 20,000
configuration samples, which resulted in 11,019 collision-
free configurations and 412,056 collision-free edges.

We used each method to solve a large number of randomly
generated planning queries in the neurosurgical scenario. We
generated 50,000 queries by sampling pairs of 3D points
(s,t) in the anatomical environment. Each point s defined
a starting robot configuration q; as the configuration in
the roadmap with the nearest tip position to s; each point
t defined the query’s goal position. For each query we
executed each planner and collected computation times and
goal accuracy. We only considered queries in which at least
one of the three methods found a collision-free motion plan
within an acceptable tolerance of the goal. We present the
results of our planner comparison in Figs. 5 and 6.

Our new interactive planning method achieved the low-
est tip error, with an average error of 0.0359mm. The
roadmap-only method averaged a higher error of 2.03mm,
which stretches the boundaries of tool precision required in
minimally invasive surgery. The IK-only planner performed
much worse due to its lack of roadmap routing, only safely
approaching the goal within an error averaging 25.6mm.



Fig. 4.

Ilustrations of 3 snapshots of an interactive neurosurgical simulation session. The user moves a 3D cursor (in red) using a SensAble Phantom

Desktop [4] and the simulated concentric tube robot follows the cursor with its tip while avoiding contact with the rendered anatomical environment.

IK Only - b
Roadmap Only [] =

Roadmap + IK -
| | | | |

0 5 10 15 20 25
Average tip error from goal (mm)

Fig. 5. Average tip error from given goals for three methods: one that
combines a precomputed roadmap with iterative IK for high accuracy, one
that uses only a roadmap, and one that only uses IK for position control. Our
combined method, roadmap plus IK, yielded the highest average accuracy
(within 0.04mm). The roadmap-only method is limited by the coarseness of
the precomputed roadmap, and the pure position control method is highly
hindered by its lack of obstacle avoidance. 95% confidence intervals are
shown.
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Fig. 6. Average planning query execution times of three versions of our
methods: one that combines a precomputed roadmap with iterative IK,
one that uses only a roadmap, and one that only uses IK for position
control. Using a precomputed roadmap helps enable execution of queries at
interactive rates.

Our interactive motion planner spent an average of 26.2ms
on each query for an average query rate of 38Hz, which
is fast enough for intuitive interaction. We also note that
the precise motions required in a real surgical procedure
will likely yield queries over shorter distances than our
random queries, likely resulting in even higher query rates.
The roadmap-only method yielded a faster average query
time than the interactive motion planner because it does
not perform the robot shape computations and collision
detection required for the safe and accurate position control.
We note that the roadmap-only method’s speedup comes at
the expense of larger tip error from goals (see Fig. 5).
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Precomputed roadmap size

Fig. 7. Average tip error from given goal of our new planning method,
using precomputed roadmaps of three different sizes.

C. Effect of Roadmap Size on Planner Performance

We also investigated the effects of varying the size of the
precomputed roadmap used in our new interactive planner.
We computed three roadmaps (small, medium, and large) by
generating 5,000, 10,000, and 20,000 configuration samples.
The final roadmaps had 3,113, 5,837, and 11,019 collision-
free configurations, respectively. These roadmaps occupied
110MB, 166MB, and 350MB of RAM, respectively. The
roadmaps required 1 hour, 3 hours, and 6 hours, respectively,
to generate. We note that all these computation times lie
within the typical timeframe between preoperative medical
imaging and the actual surgery. We then executed our inter-
active motion planner on the same set of planning queries
from Sec. V-B using each of these roadmaps. We show the
results in Figs. 7 and 8.

Although generating larger roadmaps requires more com-
putation time, our experiments show that larger roadmaps
result in both faster planning queries and lower tip error.
With a larger roadmap, the roadmap-based planner is able to
find motion plans to configurations nearer to the given goal,
thereby reducing the expensive iterative IK computations
necessary to move the tip exactly to the goal.

VI. CONCLUSION

We present a motion planning method that can compute
collision-free plans for concentric tube robots at interactive
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Fig. 8. Average planning query execution times of our new planning
method, using precomputed roadmaps of three different sizes.

rates. Our planner’s speed enables users to continuously
move the robot’s tip while the planner ensures obstacle
avoidance for the robot’s shaft. Our method derives its speed
and accuracy by combining offline precomputation of a
collision-free roadmap with online position control.

We envision this interactive motion planner as a com-
ponent of a larger teleoperative system for concentric tube
robots. In future work we will use our new planner to control
a physical robot in a phantom anatomical environment. This
system’s user interface can be improved by using recent
work in shared teleoperation [30], [31]. We will explore
uncertainty models to make the planner more robust to
errors in the kinematic and anatomical modeling. We will
also investigate extending our planner to consider dynamic
anatomical obstacles like breathing lungs and beating hearts,
which will require fast online repair of the precomputed
roadmap according to intraoperative medical imaging.
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